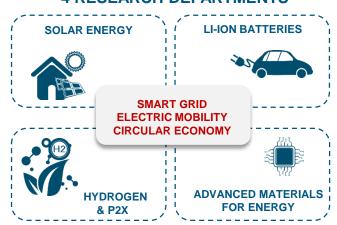


CEA-Liten: I+D para una transición energética circular

Ciclo de seminario Red + Energía – Antofagasta, 17/11/2022


General presentation

CEA-LITEN: THE FRENCH INSTITUTE FOR ENERGY TRANSITION

12 technology platforms

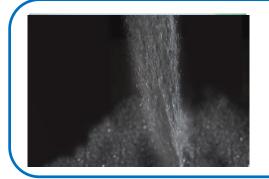
4 RESEARCH DEPARTMENTS

Mission: to accelerate the descarbonization of industries **How?** By transferring knowledge and technology to our industrial partners **2 sites**, 25.000 m² of facilities to test and develop pre-industrial prototypes

1.100 researchers, 200 patents/year, **250+ industrial partners**

HYDROGEN AND BATTERY PLATFORMS

Comprehensive vision of industrial challenges throughout the value chain, from materials to systems


Materials synthesis

Cell assembly

System development

System integration

HYDROGEN PLATFORM

BATTERY PLATFORM

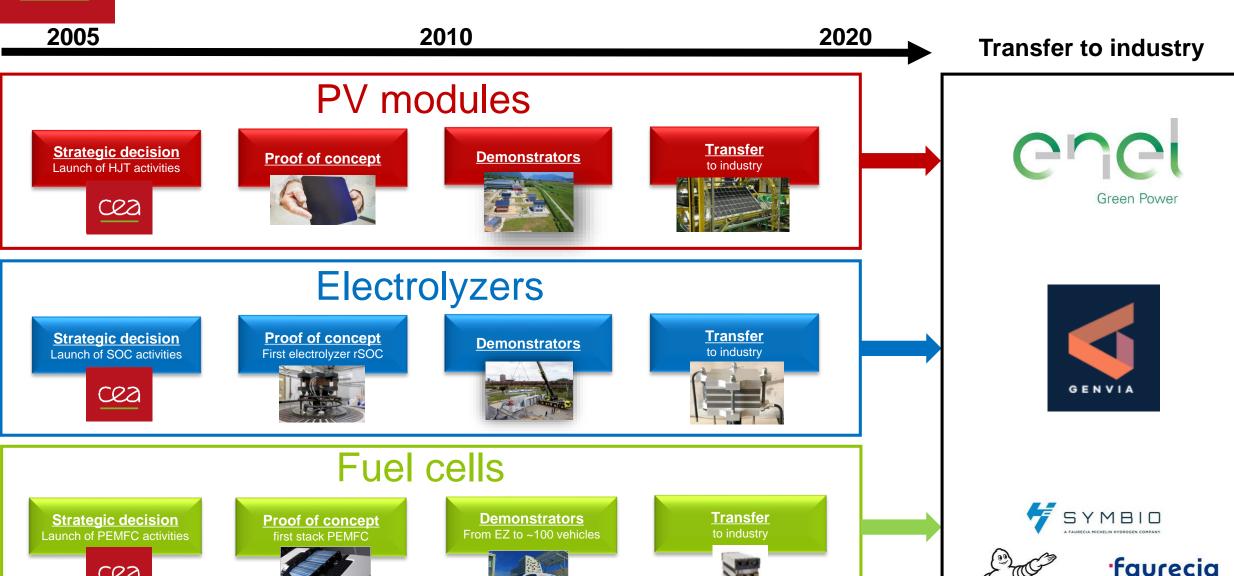
Modelling, technological watch, market análisis, tec-eco/LCA

N°1 PUBLIC RESEARCH ORGANIZATION IN LCE TECHNOLOGIES, 2000-2019

Share of IPFs in selected fields

Source:

Patents and the energy transition, IEA study, 2021


https://www.iea.org/reports/patents-and-the-energy-transition

			Share of IPFs in selected fields										
	Coun- try	LCE IPFs	Combus- tion	Alterna- tive fuels	Nuclear	Solar	Batteries	CCUS	Hydrogen and fuel cells	Smart grid	Other enabling	Chemical and oil refining	ICT
CEA/Alternative Energies and Atomic Energy Commission	FR	1772	0.1%	0.2%	3.9%	0.9%	0.6%	0.0%	1.2%	0.1%	0.6%	0.2%	0.1%
Industrial Technology Research Institute	TW	846	0.1%	0.1%	0.0%	0.5%	0.2%	0.2%	0.3%	0.1%	0.2%	0.1%	0.2%
Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V.	DE	725	0.1%	0.2%	0.0%	0.6%	0.1%	0.0%	0.3%	0.1%	0.2%	0.2%	0.1%
IFP Energies Nouvelles/IFPEN	FR	721	0.8%	1.2%	0.0%	0.0%	0.0%	1.4%	0.1%	0.0%	0.2%	1.2%	0.0%
University of California	US	666	0.1%	0.8%	0.4%	0.3%	0.2%	0.6%	0.4%	0.1%	0.3%	0.3%	0.0%
Electronics and Telecommuni- cations Research Institute	KR	626	0.0%	0.0%	0.0%	0.3%	0.1%	0.0%	0.0%	0.5%	0.1%	0.0%	1.0%
CNRS/National Centre for Scientific Research	FR	594	0.0%	0.2%	0.1%	0.3%	0.2%	0.2%	0.3%	0.0%	0.2%	0.4%	0.0%
Tsinghua University	CN	569	0.1%	0.2%	0.3%	0.2%	0.4%	0.1%	0.2%	0.3%	0.3%	0.1%	0.0%
National Institute of Advanced Industrial Science and Technology	JP	455	0.0%	0.2%	0.0%	0.2%	0.3%	0.2%	0.2%	0.0%	0.1%	0.2%	0.0%
Battelle Memorial Institute	US	402	0.1%	0.3%	0.4%	0.0%	0.1%	0.5%	0.3%	0.2%	0.2%	0.3%	0.0%

cea

FROM RESEARCH TO INDUSTRY: SUCCESSFUL TECHNOLOGY TRANSFERS

inspiring mobility

Circular economy approach at CEA

RECYCLING PROCESSES & CRITICAL METALS RECOVERY

Ag, Cu, Al

Permanent magnets

Rare-Earth materials

E-WASTE (PCB)

Au, Pd

Li-ion Batteries

Transitions metals, Li, Al

Fuel Cells PEMFC

Catalysts (Pt, Co), Nafion

Nuclear Fuels

Radioactive catalysts, Material Radionuclide

SYSTEMIC INTEGRATION OF CIRCULAR ECONOMY IN OUR R&D DEVELOPMENT

Creation of an internal experts network within CEA to support our researchers in the systemic integration of environmental KPIs in the competitivity analysis of their R&D development:

- Technical KPIs
- → Classic tec-eco analysis approach
- Economical KPIs
- Environmental KPIs → Environmental competitivity approach (including LCA)

CIRCULAR ECONOMY OF PV SYSTEMS

- 2nd life strategies (failure diagnosis, repair, re-use)
- New efficient recycling processes
- Ex. Photorama Project (solutions from diagnostic to recycling)

Valorization & Recycling

Circular Economy of PV system

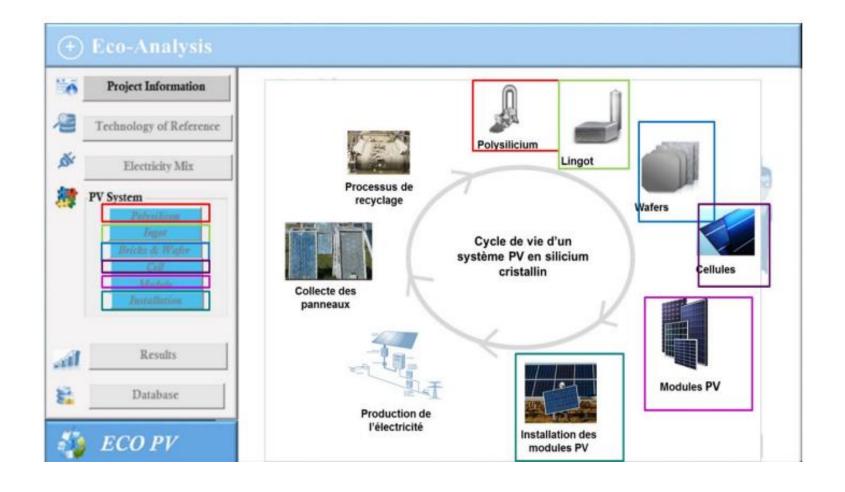
- Improve durability of PV modules
- Improve system integration
- Ex. Atamostec (PV systems adapted to desert conditions)

- Selection of materials
- Alternatives to reduce raw materials consumption
- Selection of PV components
- Enable 2nd uses
- Improve recyclability
- Reducing Elec consumption by process

Eco-design

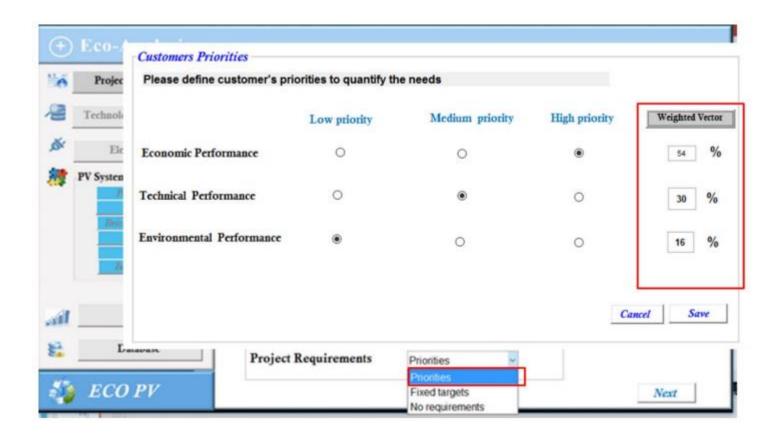
DIGITAL TOOLS FOR LCA OF PV SYSTEMS

Classic tec-eco tools

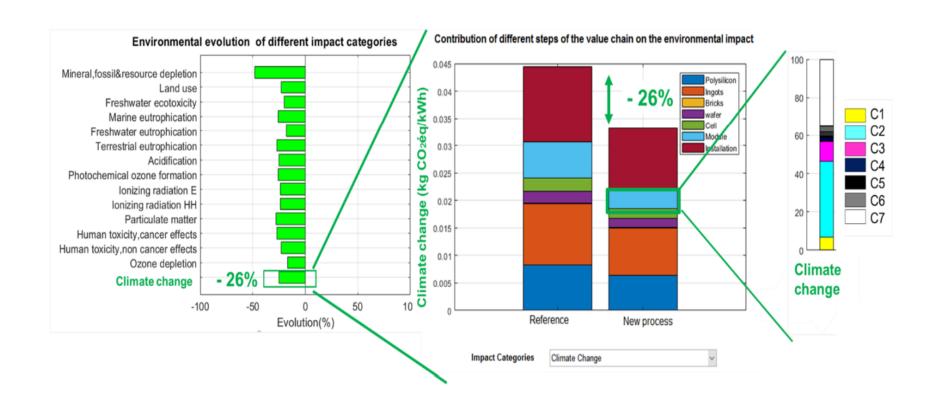

Tools	Expertise
CoO tool (internal tool)	 CoO (Cost of Ownership) assessment of PV technologies
BP tool (internal tool)	 Business plan for Giga Factory
LCOE tool (internal tool)	 Assessment of energy systems (LCOE, VAN etc.)
CoO/BP tools (internal tools)	 Technical-economical assessment of different components of PV systems

LCA tools

Tools	Expertise
Sima Pro (licence)	 Carrying out complete LCA studies over the entire life cycle of a product, process or system
ECO-PV (internal tool) PV database (internal database)	 Rapid diagnosis of one solution compared to another from an industrial perspective Assessment of scenarios and orientation of technological choices for eco-designed solutions Sensitivity analysis and tec-eco-env optimization



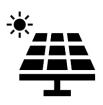
Life Cycle Analysis of a PV manufacturing process compared to other processes from CEA's database



Definition of KPI's optimization according to company's goals:

Example of results for a new PV panel manufacturing process:

Activities in Antofagasta Region


OUR 4 PILLARS IN CHILE

Solar energy

Green hydrogen

Green mining

Advanced materials for the energy transition

ATAMOSTEC: THE BIFACIAL INSTITUTE FOR DESERT PV

Objetive:

To minimize LCOE in Atacama Desert's conditions

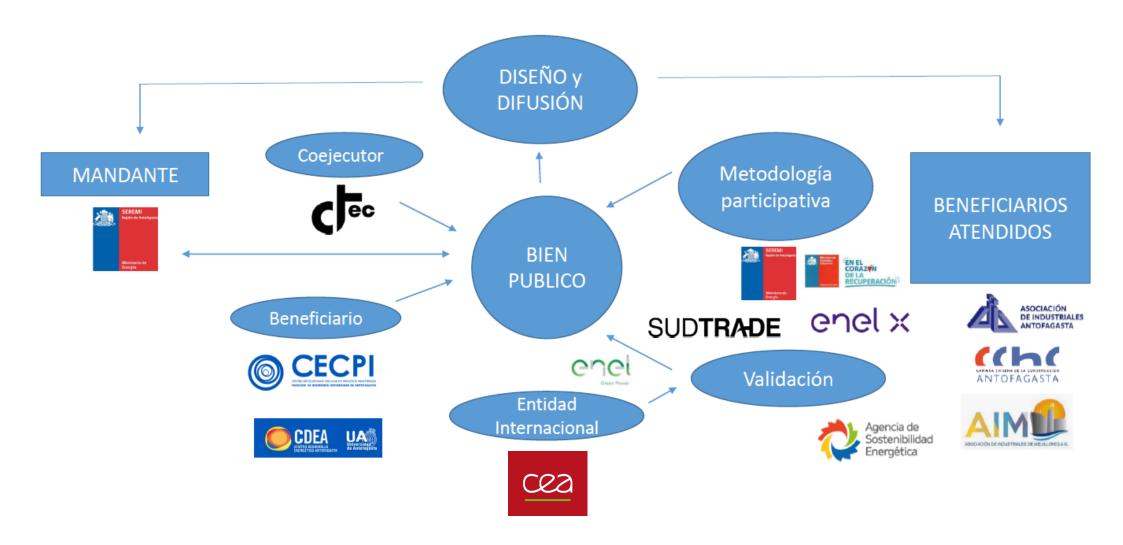
CEA-Liten contribution in ATAMOSTEC:

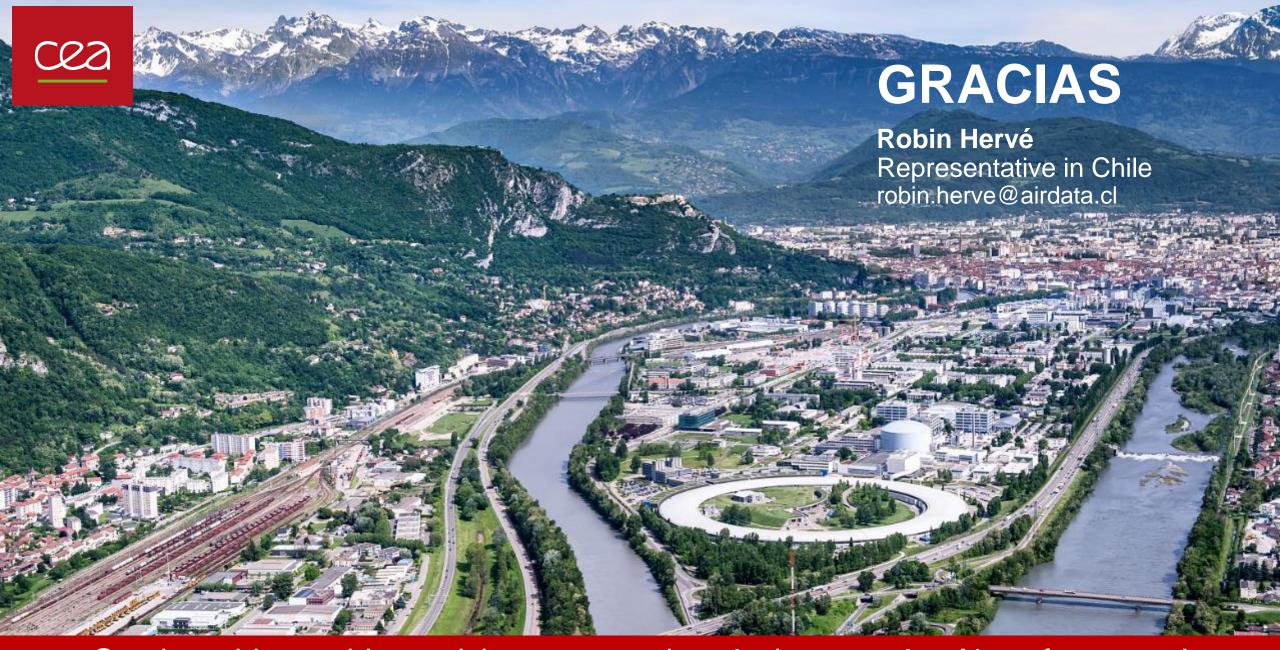
- Design of PV panels adapted to Atacama desert
- Qualification

 Desert Label
- Modeling and data analysis
- Competitiveness analysis (objective LCOE < 15 USD/MWh)
- Training, Technological Transfer

Laboratorio outdoor - PSDA (Plataforma solar del desierto de Atacama)

ATAMOSTEC: PROYECTO ATAMO II





Inauguración abril 2022

PROYECTO SOLAR CIRCULAR: HABILITAR 2DA VIDA MÓDULOS FV

Gracias y bienvenidos a visitar nuestras instalaciones en los Alpes franceses!